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Abstract

A self-consistent model for a finite-size non-neutral ultracold plasma is obtained
by extending a conventional model of globular star clusters. This model
describes the dynamics of electrons at quasi-equilibrium trapped within the
potential created by a cloud of stationary ions. A random sample of electron
positions and velocities can be generated with the statistical properties defined
by this model.

PACS numbers: 36.10.−k, 32.80.Pj, 32.60+i

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ultracold plasmas (UCP) are obtained from a sample of atoms cooled by standard magneto-
optical trap techniques and laser-excited just above the ionization threshold [1]. The excess
energy, which can be varied from about 0.1 K to 100 K, is imparted to the free electrons which
quickly leave the plasma. However, the trailing slow ions left behind create a net positive space
charge that prevents further ejection of electrons. Therefore only a fraction of the electrons
effectively leave the cloud; the value of this fraction depends on the number of atoms ionized.
The remaining electrons reach a local quasi-equilibrium state within a short time, of the order
of the electron plasma relaxation time, while the ions barely move, if at all, during this time.
Since the most energetic electrons have already left the plasma, the remaining electrons cannot
be described by a Maxwell–Boltzmann distribution, which includes electrons with arbitrarily
large velocities. On a longer time scale, the cloud expands inducing an adiabatic cooling while
the three-body recombination and de-excitation collisions tend to warm up the plasma.

Molecular dynamics (MD) simulations can accurately follow the dynamics of a UCP but
only for a short time due to extreme computing requirements [2]. It is therefore important to
start with a physically plausible configuration and to have the ability to scale the size of the
system. Kuzmin and O’Neil [3] started their N-body simulation with a far-from-equilibrium
distribution. A hybrid MD approach [1] uses the electronic quasi-equilibrium distribution as a
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background for the ion motion at time steps greater than the electron relaxation time. Recent
experiments [4] have measured the refilling rate of the Rydberg atom in a UCP at various
times during its expansion as an indicator of the instantaneous electron temperature. At these
times, a microwave flash re-ionizes the UCP, creating again the conditions for the electronic
quasi-equilibrium.

The goal of this paper is to study the equilibrium distribution of electrons captured
by a stationary ion cloud. A practical procedure for sampling the electron position and
velocity random distribution is given, which consistently describes the system after the electron
equilibration but before the start of expansion. Such distributions can be used as a starting
point for MD simulations of initial expansion or refilling rates. Following suggestions from
[5, 6], a productive analogy with the dynamics of globular star clusters can be employed
to the benefit of UCP simulations. This field of astrophysics has a long history [7] and
provides accurate models for the cluster dynamics, which is strikingly similar (evaporation,
ejection, soft binaries, etc) to UCP dynamics. However, in contrast to the gravitational case,
the attractive forces are counterbalanced by the repulsive forces between like particles, and
the mass ratio for the particles in the system is very large. These two simple facts are the
basis for important differences between the star clusters and UCP. Evidence that the electron
distribution is different from a Maxwell–Boltzmann distribution was also discovered in [8].

The self-consistent distribution obtained by solving King’s equation [9] was proved to
provide a very accurate description for many globular clusters. Based on this success, a similar
distribution was proposed in the seminal paper [10] to describe the electron distribution in UCP.
The present paper further investigates this direction of research and explores the differences
between King’s equation and its solutions as applied in astrophysics and for UCP.

2. King electron distribution

We consider a spherically symmetric cloud of Ni heavy ions, clamped on their positions, with
the Gaussian density,

ρi(r) = Ni

4πσ 3

√
2

π
e−r2/2σ 2

,

where σ is the characteristic cloud size. The electric potential created by the ion cloud alone
is the regular solution of the Poisson equation ∇2�i = − e

ε0
ρi ,

�i(r) = Ni

e

4πε0σ

erf(r/
√

2σ)

r/σ
.

A number Ne � Ni of electrons move in the potential created by the ion cloud. Their
stationary distribution cannot be Maxwell–Boltzmann (MB) since the potential �i is finite
as r → ∞. The problem is that the electrons in the tail of the MB distribution, with large
velocities, are able to escape the ionic trap. The King distribution was proposed [9] as a
stationary solution for a self-gravitating globular cloud of stars. Electrons with a similar
distribution have the phase-space density, as defined in [10, 11]:

f (r, v) = N
(4π)2v3

T σ 3
(e−(E−E0)/kT − 1)�[−e�(0) � E � E0], (1)

where N is a normalization factor, vT = √
kT /m is a characteristic velocity and k is the

Boltzmann constant. Here T is a simple parameter, not the temperature, but related to the
electron temperature in a way which will be revealed in section 5. The distribution depends
on r and v coordinates only through the energy E = mv2/2 − e�(r), which ensures that f is
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a stationary solution of Liouville’s equation. Note that here, � = �i + �e is the total electric
potential, due to both the ions and electrons. In general, when Ni > Ne, the potential � is
a positive, monotonically decreasing function of the radial coordinate r. The � function is 1
when its argument is true and 0 otherwise, and ensures that only electrons with energy less than
the threshold energy E0 < 0 are trapped. The negative threshold energy E0 is related to the
maximum spatial extension allowed for electron r0, by E0 = −e�(r0). Similar to the globular
cluster case, the spatial and energy truncation are necessary to describe systems which are
not isolated, but in contact with weak external fields, such as the electric and magnetic fields
used to collect charged particles. The limit of the King model for r0 → ∞, as discussed in
the section 4, has an acceptable solution only for Ne = Ni . This means that an infinite size
King model can only model a neutral plasma with the same number of electrons and ions. At
a given radial position r, the escape velocity is defined as ve = √

2e(�(r) − �(r0))/m.
In order to sample the distribution (1), we need to find first the potential �, and the relation

between the size r0, the threshold energy E0, the normalization N and the number of electrons
Ne. This goal is accomplished by solving the complete Poisson equation ∇2� = − e

ε0
ρi + e

ε0
ρe,

where the electron density is obtained by integrating the phase-space distribution over the
velocity space

ρe(r) = N
4πv3

T σ 3

∫ ve

0
v2 dv(e−(E−E0)/kT − 1).

Changing the integration variable from v to x according to v2 = 2v2
T [x+e(�(r)−�(r0))/kT ],

we find

ρe(r) = N
√

2

4πσ 3

∫ 0

−e(�(r)−�(r0))/kT

√
x + e(�(r) − �(r0))/kT (e−x − 1) dx,

which gives an implicit relation between ρe and �. By defining W(r) = e(�(r)−�(r0))/kT ,
the electron density can be calculated by direct integration as

ρe(r) = N
√

2

4πσ 3

∫ 0

−W

√
x + W(e−x − 1) dx = N

√
2

4πσ 3

2

3

[
3
√

π

4
eW erf

√
W − (W + 3/2)

√
W

]
(2)

This expression is valid only for 0 � r � r0, where W � 0, while outside this interval ρe = 0.
The function W is obtained as the solution of the complete Poisson equation when the

electron density ρe is replaced by expression (2). As a result, the following nonlinear ODE
has to be solved:

1

R

d2

dR2
RW(R) = −Ni

N0

√
2

π
e−R2/2 +

N
N0

[√
π

2
eW erf

√
W −

(
2

3
W + 1

) √
2W

]
, (3)

where R = r/σ is the normalized radial distance and N0 = 4πε0kT σ/e2 is the characteristic
particle number. The boundary conditions for this equation are: W ′(0) = 0,W(R0) = 0 and
W(R → ∞) = −e�(r0)/kT , where R0 = r0/σ .

Introducing the notation

�[W ] =
{√

π
2 eW erf

√
W − (

2
3W + 1

) √
2W, W > 0

0, W � 0

the electron density is simply

ρe(r) = N
4πσ 3

�[W(r/σ)]
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and the number of electrons is obtained by integrating (2) over the coordinate space

Ne = N
∫ R0

0
R2�[W ] dR.

Equation (3) is now written as

1

R

d2

dR2
RW(R) = −Ni

N0

(√
2

π
e−R2/2 − α�[W ]

)
,

where the parameter α is introduced, such that N = αNi .
This equation is very similar to the equation for the globular clusters, but there are

important differences. The right-hand side in equation (3), unlike in the case of star clusters,
is not always negative. The space scale in the plasmas is fixed by σ , whereas it is a model
parameter for globular clusters. There is also no inhomogeneous term equivalent to the ionic
contribution in plasmas, for the case of globular clusters.

3. Examples

In his seminal paper [9] King proposed to solve equation (3) by starting from the origin and
integrating forward until W = 0. A class of models is therefore obtained for various values
of the free parameter W(0), the value of W at the origin.

As the right-hand side of equation (3) is always positive in the gravitational case, this
procedure always yields a solution, and the cutoff radius R0 for which W(R0) = 0 increases
with increasing W(0). The plasma case is more complicated as the RHS of equation (3) can
in principle be both positive and negative. The solution diverges if the RHS is positive, and
hence not all values of W(0) produce a meaningful model. Since the number of electrons Ne

is related to distribution normalization, the number of electrons cannot be specified from the
beginning, which is another serious drawback of this approach.

A better approach is to regard equation (3) as a boundary value problem, and to integrate
it backward starting from R0. This is facilitated by the observation that the solution to
equation (3) is fully known outside the sphere of radius R0, and has the expression

Wout(R) = Ni

N0

erf(R/
√

2)

R
− Ne

N0

1

R
+

E0

kT
, (R � R0).

If Ni,Ne and E0 are specified, then the cutoff radius R0 is obtained as a solution of Wout(R) = 0.
Since the derivative of W is also known at R0, then equation (3) can be integrated backward
for various values of the normalization N (or α), with the goal of canceling the derivative at
the origin: W ′(0) = 0. This process is similar to the shooting method for solving boundary
value problems.

Figure 1 illustrates three solutions obtained for a cloud of Ni = 24 000 ions, of size
σ = 100 μm, and three different electron populations. The ion density falls down very fast
(exponentially), while the electron density extends well outside the ion cloud, decreasing
slowly to zero at R0.

4. The case of no-space constraints

This section treats the case R0 → ∞. An integral equation is obtained from equation (3) by
using Green’s function for the Poisson equation and regarding the RHS as an inhomogenous
term:

W(R) = Ni

N0

erf(R/
√

2)

R
− N

N0

∫ ∞

0

x2

max(x, R)
�[W ] dx, (4)
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Figure 1. Three models with the same ion distribution with Ni = 24 000 and σ = 100 μm,
and different electron populations Ne = 22 500, 23 000 and 23 500. Parameters are T = 50 and
E0 = −5 K. Upper graph shows the electric potential along the radial direction. The lower graph
shows the number density for electrons (color lines) and for the ions (black line). The potential
created by the ions only is displayed in the upper graph (black line). The vertical dashed lines
indicate the position of cutoff radius R0 for each model, while the horizontal dashed line shows
the threshold energy E0.

where it is assumed that the integral makes sense, or in other words, Ne = N
∫ ∞

0 x2�[W ] dx <

∞.
The asymptotic behavior of the function � for small arguments is

�(x) = 4
√

2

15
x5/2 +

8
√

2

105
x7/2 + O(x9/2).

Therefore, a solution which decays only as W ∼ 1/R, for R → ∞, which would be
obtained if the plasma were not neutral, is not acceptable because in that case � decreases as
�[W ] ∼ 1/R5/2, not fast enough to make the integral convergent.

If one assumes that W(R) = A/Rβ , then the integral equation (4) for large R becomes

A

Rβ
= 1

R

Ni − N
∫ ∞

0 x2�[W ]

N0
− N

N0

∫ ∞

R

x
(

1 − x

R

)
�[W ] dx.

For W to decay faster than 1/R it is required that β > 1 and that the coefficient in the 1/R

term, proportional to total charge Ni −Ne, vanishes. On equating the LHS with the 1/R5/2β−2

from the second term on RHS, one gets β = 4/3, which is greater than unity as required.
If Ne = Ni , then one obtains the following constraint,

A

R4/3
= N

N0

3
√

2

5

A5/2

R4/3
,

which fixes the value of the normalization constant to
N
N0

= 5

3
√

2A3/2
.
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Since the electron density is proportional to �[W ], and W ∼ 1/R4/3 at large R, then the
electron density needs to decay as ∼R−10/3. Such a model is obtained by starting at some
value R∗, with the initial condition W = A/R∗4/3 and integrating backward equation (3),
toward the origin. The condition of regularity at the origin fixes the value of the only free
parameter A.

5. Results

An ensemble of electrons with statistical properties in the (r, v) plane defined by equation (1)
can be generated after obtaining the potential �(r) from the solution W(R) of equation (3).
Because the distribution is isotropic a full three-dimensional (r, v) population is obtained by
attaching arbitrary directions to electron positions and velocities.

The King distribution in equation (1) is generated by first starting with an initial uniform
distribution in the (r, v) plane and then performing Metropolis accept/reject steps until
convergence. By denoting a point in the (r, v) plane by x, a proposed new point x ′ is obtained
by sampling a random distribution which gives x ′ with probability Px→x ′ . A good choice for
Px→x ′ is, for example, a normal distribution centered at x and with the standard deviation a
fraction of the (r, v) domain sampled. For this distribution Px→x ′ = Px ′→x . The proposed
x → x ′ step is accepted with the probability �x(x

′) = min(ρ(x ′)/ρ(x), 1), by generating a
random number in the interval [0, 1] and comparing it with the ratio ρ(x ′)/ρ(x). The proposed
step is accepted if the random number is less than �x(x

′), or rejected otherwise. Here ρ is the
desired distribution function given by equation (1). Therefore, the probability of moving point x
to x ′ is Wx→x ′ = Px→x ′�x(x

′). Since the detailed balance relation ρ(x ′)Wx ′→x = ρ(x)Wx→x ′

is satisfied, the initial distribution will converge to ρ after sufficient iterations.
The rest of this section will present a detailed analysis for a specific King model. This case

has 25 600 ions and 25 088 electrons. The Gaussian ion distribution has standard deviation
σ = 120 μm. The electron distribution has the parameter T = 50 K, threshold energy
E0 = −5 K and the cutoff radius r0 = 1711 μm. The density in the center of the cloud for
both electrons and ions is about 109 cm−3. The electron distribution is obtained after 4000
Metropolis steps.

Figure 2 compares the radial distribution for electrons generated by the Metropolis random
walk process with the prediction given by equation (2). The good agreement indicates
convergence.

In figure 3, radial distribution of ions is compared with that of electrons. The electron
distribution extends for larger distances and has lower densities at short distances.

The phase-space profile of the King distribution is shown in figure 4, where the contour
lines indicate constant density. The left figure shows the sampled population while the figure
on the right shows the predicted distribution of equation 1.

In figure 5, the velocity distribution for the sampled electrons can be seen to be in
agreement with the theoretical prediction obtained by integrating distribution (1) over spatial
coordinates

ρ(v) = N
v2

v2
T

[
e−v2/2kT

∫ R∗(v)

0
eW(R)R2 dR − R∗(v)3

3

]
,

where R∗(v) is the radial position where E = E0 for a given velocity. In contrast, the Maxwell–
Boltzmann distribution, shown with the dashed line, extends for much larger velocities.

Although stationary, the King distribution is not characterized by a unique temperature.
The symbol T in equation (1) is rather a parameter, and not the temperature. However, it is
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Figure 2. Electron radial distribution for the King distribution, from sampled population
(histogram) and theoretical prediction (solid line).
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Figure 3. Ion radial distribution for the King distribution, from sampled population (histogram)
and theoretical prediction (solid line), compared with electron radial distribution (dashed line).

possible to define a local temperature as a measure of the velocity dispersion: Tlocal = m〈v2〉/3.
This results in the following relation:

Tlocal(R) = T

√
π
2 eW erf

√
W − (

4
15W 2 + 2

3W + 1
) √

2W√
π
2 eW erf

√
W − (

2
3W + 1

) √
2W

,

where W is the solution of equation (3). Figure 6 compares the predicted position-dependent
temperature with the temperatures sampled inside regions separated by a series of spherical
shells.
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Figure 5. The electron velocity for the King distribution from the sample (histogram) and
theoretical prediction (solid line), compared with that of a Maxwell–Boltzmann distribution with
T = 50 K (dashed line).

Figure 7 shows the histogram of energies for the sampled King distribution, in good
agreement with the theoretical result (solid line) calculated from equation (1) as

ρ(E) = f (E)g(E) = f (E)

∫ ∫
δ(mv2/2 − e�(r) − E) dr dv.

Here g(E) is the classical number of states for the given energy—the phase-space volume
occupied by the energy manifold, and f is the distribution function in equation (1).
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Figure 7. Electron energy distribution for the King distribution: from sampled population
(histogram) and theoretical prediction (solid line).

6. Conclusions

A stationary, finite-size distribution is constructed for the electrons in a cloud of fixed ions
with a Gaussian density profile. The model is similar to the King model used in astrophysics,
but important differences arise from the fact that in a plasma, in contrast to the gravitational
case, there are also repulsive forces, apart from the attractive ones.

The distributions can be used as a starting point in molecular dynamics simulations and
also in Monte Carlo simulations where working with quasi-equilibrium electron distributions
is an essential condition. The King model without space constraints can only exist when the
net charge is zero, and for this case the radial density decreases asymptotically as 1/R10/3.

The electron temperature decreases substantially with increasing distance from the center.
One can combine the decrease of density with the one in temperature and evaluate the local
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r-dependent rate of TBR using kTBR ∼ ρiρ
2
e

/
T 9/2, as a rough estimate and assuming the

validity conditions of the present model.
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